Real-time coordination of distributed energy resources (DERs) is crucial for regulating the voltage profile in distribution grids. By capitalizing on a scalable neural network (NN) architecture, one can attain decentralized DER decisions to address the lack of real-time communications. This paper develops an advanced learning-enabled DER coordination scheme by accounting for the potential risks associated with reactive power prediction and voltage deviation. Such risks are quantified by the conditional value-at-risk (CVaR) using the worst-case samples only, and we propose a mini-batch selection algorithm to address the training speed issue in minimizing the CVaR-regularized loss. Numerical tests using real-world data on the IEEE 123-bus test case have demonstrated the computation and safety improvements of the proposed risk-aware learning algorithm for decentralized DER decision making, especially in terms of reducing feeder voltage violations.
翻译:分配能源(DERs)的实时协调对于管理分配网格中的电压配置至关重要。通过利用可扩缩的神经网络(NN)架构,人们可以实现分散的DER决定,解决缺乏实时通信的问题。本文通过计算与反应性电预测和电压偏离有关的潜在风险,制定了先进的学习驱动DER协调计划。这种风险仅使用最坏的样本,按有条件的风险值(CVaR)量化,我们建议采用小型批量选择算法,解决培训速度问题,尽量减少CVaR的常规损失。使用IEEE 123-Bus测试案例的实时世界数据进行的数字测试,显示了分散式DER决策的拟议风险意识学习算法的计算和安全改进,特别是减少侵犯电源电压的情况。