Computing strongly connected components (SCC) is a fundamental problems in graph processing. As today's real-world graphs are getting larger and larger, parallel SCC is increasingly important. SCC is challenging in the parallel setting and is particularly hard on large-diameter graphs. Many existing parallel SCC implementations can be even slower than Tarjan's sequential algorithm on large-diameter graphs. To tackle this challenge, we propose an efficient parallel SCC implementation using a new parallel reachability algorithm. Our solution is based on a novel idea referred to as vertical granularity control (VGC). It breaks the synchronization barriers to increase parallelism and hide scheduling overhead. To use VGC in our SCC algorithm, we also design an efficient data structure called the \emph{parallel hash bag}. It uses parallel dynamic resizing to avoid redundant work in maintaining frontiers (vertices processed in a round). We implement the parallel SCC algorithm by Blelloch et al.\ (J.\ ACM, 2020) using our new parallel reachability algorithm. We compare our implementation to the state-of-the-art systems, including GBBS, iSpan, Multi-step, and our highly optimized Tarjan's (sequential) algorithm, on 18 graphs, including social, web, $k$-NN, and lattice graphs. On a machine with 96 cores, our implementation is the fastest on 16 out of 18 graphs. On average (geometric means) over all graphs, our SCC is 6.0$\times$ faster than the best previous parallel code (GBBS), 12.8$\times$ faster than Tarjan's sequential algorithms, and 2.7$\times$ faster than the \emph{best existing implementation on each graph}. We believe that our techniques are of independent interest. We also apply our parallel hash bag and VGC scheme to other graph problems, including connectivity and least-element lists (LE-lists).


翻译:与电子计算机紧密相连的组件( SCC) 是图形处理中的一个基本问题 。 由于今天真实世界的图形正在变得越来越大, 平行的 SCC 越来越重要 。 在平行的设置中, SCC 具有挑战性, 在大直径图中特别困难 。 许多现有的平行 SCC 执行甚至比 Tarjan 在大直径图中的序列算法更慢。 为了应对这一挑战, 我们建议使用新的平行可达性算法来实施高效平行的 SCC 。 我们的解决方案基于一种新颖的理念, 即垂直颗粒控制( VGC ) 。 它打破了同步屏障, 增加平行值$, 并隐藏间接值 。 为了在我们的 SCC 算法中使用 VGC, 许多平行的 SCC 执行程序甚至比 18 的平面平面的平面计算法( 包括 GBBS 的平面图 ) 。 我们用 Blelodlemental 和 V. ( J.</s>

0
下载
关闭预览

相关内容

如今,服务业占据了IT行业的主要部分。公司越来越喜欢专注于其核心专业领域,并使用IT服务来满足其所有外围需求。服务计算是一门新的科学,其目的是研究和更好地理解这个高度流行的产业的基础。它涵盖了利用计算和信息技术来建模、创建、操作和管理业务服务的科学和技术。SCC 2019也将为构建这一重要科学的支柱和塑造服务计算的未来做出贡献。 官网链接:https://conferences.computer.org/services/2019/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月28日
Arxiv
0+阅读 · 2023年4月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员