The Internet of Things (IoT) is integrating the Internet and smart devices in almost every domain such as home automation, e-healthcare systems, vehicular networks, industrial control and military applications. In these sectors, sensory data, which is collected from multiple sources and managed through intermediate processing by multiple nodes, is used for decision-making processes. Ensuring data integrity and keeping track of data provenance is a core requirement in such a highly dynamic context, since data provenance is an important tool for the assurance of data trustworthiness. Dealing with such requirements is challenging due to the limited computational and energy resources in IoT networks. This requires addressing several challenges such as processing overhead, secure provenance, bandwidth consumption and storage efficiency. In this paper, we propose ZIRCON, a novel zero-watermarking approach to establish end-to-end data trustworthiness in an IoT network. In ZIRCON, provenance information is stored in a tamper-proof centralized network database through watermarks, generated at source node before transmission. We provide an extensive security analysis showing the resilience of our scheme against passive and active attacks. We also compare our scheme with existing works based on performance metrics such as computational time, energy utilization and cost analysis. The results show that ZIRCON is robust against several attacks, lightweight, storage efficient, and better in energy utilization and bandwidth consumption, compared to prior art.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员