The ICP registration algorithm has been a preferred method for LiDAR-based robot localization for nearly a decade. However, even in modern SLAM solutions, ICP can degrade and become unreliable in geometrically ill-conditioned environments. Current solutions primarily focus on utilizing additional sources of information, such as external odometry, to either replace the degenerate directions of the optimization solution or add additional constraints in a sensor-fusion setup afterward. In response, this work investigates and compares new and existing degeneracy mitigation methods for robust LiDAR-based localization and analyzes the efficacy of these approaches in degenerate environments for the first time in the literature at this scale. Specifically, this work investigates i) the effect of using active or passive degeneracy mitigation methods for the problem of ill-conditioned ICP in LiDAR degenerate environments, ii) the evaluation of TSVD, inequality constraints, and linear/non-linear Tikhonov regularization for the application of degenerate point cloud registration for the first time. Furthermore, a sensitivity analysis for least-squares minimization step of the ICP problem is carried out to better understand how each method affects the optimization and what to expect from each method. The results of the analysis are validated through multiple real-world robotic field and simulated experiments. The analysis demonstrates that active optimization degeneracy mitigation is necessary and advantageous in the absence of reliable external estimate assistance for LiDAR-SLAM, and soft-constrained methods can provide better results in complex ill-conditioned scenarios with heuristic fine-tuned parameters.
翻译:暂无翻译