We present a learning-based method, namely GeoUDF,to tackle the long-standing and challenging problem of reconstructing a discrete surface from a sparse point cloud.To be specific, we propose a geometry-guided learning method for UDF and its gradient estimation that explicitly formulates the unsigned distance of a query point as the learnable affine averaging of its distances to the tangent planes of neighboring points on the surface. Besides,we model the local geometric structure of the input point clouds by explicitly learning a quadratic polynomial for each point. This not only facilitates upsampling the input sparse point cloud but also naturally induces unoriented normal, which further augments UDF estimation. Finally, to extract triangle meshes from the predicted UDF we propose a customized edge-based marching cube module. We conduct extensive experiments and ablation studies to demonstrate the significant advantages of our method over state-of-the-art methods in terms of reconstruction accuracy, efficiency, and generality. The source code is publicly available at https://github.com/rsy6318/GeoUDF.
翻译:我们提出了一个基于学习的方法,即GeoUDF,以解决从稀疏的云层重建离散表面的长期和具有挑战性的问题。 具体地说,我们提议为UDF及其梯度估计采用几何制导学习方法,明确表述一个查询点的无符号距离,作为其与表面相邻点相近平面之间平均距离的可学习近距离。此外,我们通过为每个点明确学习一个四面形多面体来模拟输入点云的当地几何结构。这不仅便于对输入点稀疏云进行取样,而且自然地诱发非定向正常,从而进一步增强UDF的估计。最后,为了从预测的UDF中提取三角线外线,我们提议一个按边基边基的行进方模块。我们进行广泛的实验和模拟研究,以证明我们的方法在重建准确性、效率和普遍性方面比州-艺术方法的重大优势。源代码可公开查阅https://github.com/rsy6318/GeouDF。</s>