In this paper, we propose Point-Voxel Recurrent All-Pairs Field Transforms (PV-RAFT) to estimate scene flow from point clouds. All-pairs correlations play important roles in scene flow estimation task. However, since point clouds are irregular and unordered, it is challenging to efficiently extract features from all-pairs fields in 3D space. To tackle this problem, we present point-voxel correlation fields, which captures both local and long-range dependencies of point pairs. To capture point-based correlations, we adopt K-Nearest Neighbors search that preserves fine-grained information in the local region. By voxelizing point clouds in a multi-scale manner, a pyramid correlation voxels are constructed to model long-range correspondences. Integrating two types of correlations, our PV-RAFT makes use of all-pairs relations to handle both small and large displacements. We evaluate the proposed method on both synthetic dataset FlyingThings3D and real scenes dataset KITTI. Experimental results show that PV-RAFT surpasses state-of-the-art methods by remarkable margins.
翻译:在本文中,我们提出点-福克斯经常全光场变换(PV-RAFT)以估计点云的场景流动。所有的波形相关关系在现场流动估计任务中起着重要作用。然而,由于点云是非规律和无顺序的,因此要有效地从3D空间的所有波形字段中提取特征是具有挑战性的。为了解决这一问题,我们提出点-福克斯相关领域,它既能捕捉点对点对点的当地和远距离依赖性。为了捕捉点基相关关系,我们采用了K-最近的邻域搜索,以保存当地地区的精细重信息。通过多尺度的氧化点云,构建了一个金字形相关变量,以模拟长距离通信。整合了两种类型的关联,我们的光-福克斯联系利用所有波形关系来处理大小的偏移位。我们评估了合成数据集飞行3D和真实场景数据集KITTI的拟议方法。实验结果表明,PV-RAFT-Mial-side-stal-surate-stal-stable-stable-styal-stal-stal-stat-stat-stat-stat-stat-stat-stat-s