The combinatorial graph Laplacian has been a fundamental object in the analysis of and optimization on graphs. Its spectral structure has been widely used in graph optimization problems (e.g, clustering), and it is also connected to network circuit theory. There is also a topological view of the graph Laplacian, which permits the extension of the graph Laplacian to the more general $q$-th combinatorial Laplacian $\Delta_q^K$ for a simplicial complex $K$. In this way, the standard graph Laplacian is simply the 0-th case (when $q=0$) of this family of operators. Taking this topological view, Wang et al. introduced the so-called persistent Laplacian $\Delta_q^{K,L}$, which is an extension of the combinatorial Laplacian to a pair of simplicial complexes $K \hookrightarrow L$. In this paper, we present a thorough study of properties and algorithms for persistent Laplacians. We first prove that the nullity of $\Delta_q^{K,L}$ gives rise to the $q$-th persistent Betti number from $K$ to $L$. We then present a first algorithm to compute the matrix representation of $\Delta_q^{K,L}$, which helps reveal insights into the meaning of persistent Laplacian. We next show a new relation between the persistent Laplacian and the so-called Schur complement of a matrix. This has several interesting implications. For example, in the graph case, this uncovers a relation with the notion of effective resistance, as well as a persistent version of the Cheeger inequality. This also gives a second, very simple algorithm to compute the $q$-th persistent Laplacian. This in turn leads to a new algorithm to compute the $q$-th persistent Betti number for a pair of spaces which can be significantly more efficient than existing algorithms under some conditions. Finally, we also study persistent Laplacians for a filtration of simplicial complexes, and present interesting stability results for their eigenvalues.


翻译:拼图 Laplaceian 是一个分析和优化图解的根本性目标。 它的光谱结构被广泛用于图形优化问题( 如, 群集), 并且与网络电路理论连接 。 图像 Laplacian 也有了一个地形学视图, 使得Laplaceian 扩展为更普通的 $- scional Laplacian 。 Laplacian 扩展为一双更普通的 $- delta_ qQK$, 用来分析和优化图解 。 这样, 标准图 Laplacian 仅仅是这个操作家家族的 0 个案例( 当 $= 0 美元 时 ) 。 使用这个表层观观点, Wang 和 Al al. 引入了所谓的“ 永久的 Laplacian $ delta_ quqrq ” 。 这是拉precialation Laplace 的扩展为一对一对一对一对 美元 美元 美元 的 complical rental ration 。 在本文上, 我们tal_ ration rational_ dental lax ration ration 。 ration 。 。 。 。 lax a a dental_ dental lax a dental dentalx a dental dental dentalx a dentalxx a dental dentalxxx 。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
已删除
将门创投
4+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年2月9日
Arxiv
0+阅读 · 2021年2月9日
Arxiv
0+阅读 · 2021年2月9日
Arxiv
0+阅读 · 2021年2月8日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
已删除
将门创投
4+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员