The computation of matrix functions $f(A)$, or related quantities like their trace, is an important but challenging task, in particular for large and sparse matrices $A$. In recent years, probing methods have become an often considered tool in this context, as they allow to replace the computation of $f(A)$ or $\text{tr}(f(A))$ by the evaluation of (a small number of) quantities of the form $f(A)v$ or $v^Tf(A)v$, respectively. These tasks can then efficiently be solved by standard techniques like, e.g., Krylov subspace methods. It is well-known that probing methods are particularly efficient when $f(A)$ is approximately sparse, e.g., when the entries of $f(A)$ show a strong off-diagonal decay, but a rigorous error analysis is lacking so far. In this paper we develop new theoretical results on the existence of sparse approximations for $f(A)$ and error bounds for probing methods based on graph colorings. As a by-product, by carefully inspecting the proofs of these error bounds, we also gain new insights into when to stop the Krylov iteration used for approximating $f(A)v$ or $v^Tf(A)v$, thus allowing for a practically efficient implementation of the probing methods.


翻译:矩阵函数 $f( A) $( A) 或 $v) 或 $v( Tf( A) v) 美元等相关数量的计算是一项重要但具有挑战性的任务, 特别是对于大型和稀少的基质 $ A 美元, 特别是对于大型和稀少基质 $ 美元 。 近年来, 调查方法已成为这一背景下经常考虑的工具, 因为它们允许通过对表格 $( A) 的( 少量) 数量进行评估来取代 $f( A) 美元 或 $ ( A) 或 类似其微量 。 这些任务随后可以通过标准技术, 例如 Krylov 亚空间方法等, 有效解决。 众所周知, 当 $ ( A) 美元 或 $ ( 美元) 或 $ ( 美元) 美元 等项的计算方法几乎有效。 当 美元 ( A) 显示其执行效率时, 精确地检查 K- 是否正确性时, 将 方法约束为 K- grow- greal- greaching the the greal- grealations and the we becal- begregrealation the we becrealting the s

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员