We show, assuming the Strong Exponential Time Hypothesis, that for every $\varepsilon > 0$, approximating directed Diameter on $m$-arc graphs within ratio $7/4 - \varepsilon$ requires $m^{4/3 - o(1)}$ time. Our construction uses nonnegative edge weights but even holds for sparse digraphs, i.e., for which the number of vertices $n$ and the number of arcs $m$ satisfy $m = n \log^{O(1)} n$. This is the first result that conditionally rules out a near-linear time $5/3$-approximation for Diameter.
翻译:假设强烈的指数时间假说,我们假设,对于每1美元 > 0美元,7/4-\\\4\4/3 - o(1)}美元比例范围内的1美元正值直线直线直线直线直线图形,大约需要7/4美元- 4/3 - o(1)}美元比例。我们的建筑使用非负边重量,但甚至用于稀薄的分线,也就是说,顶点数为10美元,弧数为1美元,而顶点数为1美元=1美元。这是有条件地排除接近直线时间5/3美元接近直线时间的第一个结果。