Haagerup's proof of the non commutative little Grothendieck inequality raises some questions on the commutative little inequality, and it offers a new result on scalar matrices with non negative entries. The theory of completely bounded maps implies that the commutative Grothendieck inequality follows from the little commutative inequality, and that this passage may be given a geometric form as a relation between a pair of compact convex sets of positive matrices, which, in turn, characterizes the little constant in the complex case.
翻译:暂无翻译