In this paper, we explore whether a robot can learn to regrasp a diverse set of objects to achieve various desired grasp poses. Regrasping is needed whenever a robot's current grasp pose fails to perform desired manipulation tasks. Endowing robots with such an ability has applications in many domains such as manufacturing or domestic services. Yet, it is a challenging task due to the large diversity of geometry in everyday objects and the high dimensionality of the state and action space. In this paper, we propose a system for robots to take partial point clouds of an object and the supporting environment as inputs and output a sequence of pick-and-place operations to transform an initial object grasp pose to the desired object grasp poses. The key technique includes a neural stable placement predictor and a regrasp graph-based solution through leveraging and changing the surrounding environment. We introduce a new and challenging synthetic dataset for learning and evaluating the proposed approach. We demonstrate the effectiveness of our proposed system with both simulator and real-world experiments. More videos and visualization examples are available on our project webpage.
翻译:在本文中, 我们探讨一个机器人是否可以学会重塑一组不同的物体, 以达到各种想要的抓取姿势。 当一个机器人的当前抓取姿势无法完成想要的操作任务时, 需要重新校正。 拥有这种能力的机器人在许多领域, 如制造业或家政服务等, 都有应用。 然而, 由于日常物体的几何差异巨大, 以及状态和行动空间的高度维度, 这是一项具有挑战性的任务 。 在本文中, 我们提议一个机器人系统, 以一个物体的局部点云和辅助环境作为输入和输出一个选择和位置操作序列, 将最初的物体抓取姿势转换为想要的物体抓取姿势。 关键技术包括一个神经稳定定位预测器, 以及通过利用和改变周围环境来重新绘制图形解决方案 。 我们引入了一个新的、 具有挑战性的合成数据集, 用于学习和评估拟议方法 。 我们用模拟器和真实世界实验来展示我们提议的系统的有效性 。 在项目网页上可以找到更多的视频和可视化实例 。