Recovering the 3D structure of an object from a single image is a challenging task due to its ill-posed nature. One approach is to utilize the plentiful photos of the same object category to learn a strong 3D shape prior for the object. This approach has successfully been demonstrated by a recent work of Wu et al. (2020), which obtained impressive 3D reconstruction networks with unsupervised learning. However, their algorithm is only applicable to symmetric objects. In this paper, we eliminate the symmetry requirement with a novel unsupervised algorithm that can learn a 3D reconstruction network from a multi-image dataset. Our algorithm is more general and covers the symmetry-required scenario as a special case. Besides, we employ a novel albedo loss that improves the reconstructed details and realisticity. Our method surpasses the previous work in both quality and robustness, as shown in experiments on datasets of various structures, including single-view, multi-view, image-collection, and video sets.
翻译:从单一图像中回收对象的 3D 结构是一项具有挑战性的任务。 一种方法是利用同一对象类别的丰富照片来学习该对象之前的强立体形状。 这种方法已经成功地通过吴等人( 2020年) 最近的一项工作得到了证明, 吴等人( 2020年) 取得了令人印象深刻的 3D 重建网络, 并且没有受到监督的学习。 但是, 它们的算法只适用于对称对象。 在本文中, 我们用一种新颖的、 不受监督的算法来消除对称要求, 它可以从多图像数据集中学习 3D 重建网络。 我们的算法比较笼统, 覆盖对称要求的情景, 并作为一个特殊案例。 此外, 我们使用一种新的反射率损失来改进重建的细节和现实性。 我们的方法在质量和稳健度上都超过了先前的工作, 正如关于各种结构的数据集的实验所显示的那样, 包括单视图、 多视图、 图像采集和视频集。