We propose a method for quantifying uncertainty in high-dimensional PDE systems with random parameters, where the number of solution evaluations is small. Parametric PDE solutions are often approximated using a spectral decomposition based on polynomial chaos expansions. For the class of systems we consider (i.e., high dimensional with limited solution evaluations) the coefficients are given by an underdetermined linear system in a regression formulation. This implies additional assumptions, such as sparsity of the coefficient vector, are needed to approximate the solution. Here, we present an approach where we assume the coefficients are close to the range of a generative model that maps from a low to a high dimensional space of coefficients. Our approach is inspired be recent work examining how generative models can be used for compressed sensing in systems with random Gaussian measurement matrices. Using results from PDE theory on coefficient decay rates, we construct an explicit generative model that predicts the polynomial chaos coefficient magnitudes. The algorithm we developed to find the coefficients, which we call GenMod, is composed of two main steps. First, we predict the coefficient signs using Orthogonal Matching Pursuit. Then, we assume the coefficients are within a sparse deviation from the range of a sign-adjusted generative model. This allows us to find the coefficients by solving a nonconvex optimization problem, over the input space of the generative model and the space of sparse vectors. We obtain theoretical recovery results for a Lipschitz continuous generative model and for a more specific generative model, based on coefficient decay rate bounds. We examine three high-dimensional problems and show that, for all three examples, the generative model approach outperforms sparsity promoting methods at small sample sizes.


翻译:我们提出一种方法,用随机参数来量化高维PDE系统中的不确定性,其中溶液评估的数量较少。参数PDE解决方案往往使用基于多元混杂扩大的光谱分解法进行近似。对于我们所考虑的系统类别(即高维和有限溶液评估),系数是由一个低定线性系统在回归配方中给出的。这意味着需要增加一些假设,如系数矢量的宽度等,以接近解决方案。在这里,我们提出一种方法,即我们假设系数接近于一个基因化模型的范围,该模型绘制从低至高维系数约束空间空间空间空间空间空间模型。首先,我们用随机高压测量的测量矩阵模型来研究在系统内部压缩感知感测的模型。我们用一个明确的基因变异模型来预测多级混杂系数的大小。我们开发的算法是为了找到我们称之为GenMod的数值,它由两个主要步骤组成。首先,我们用一个基于Ororal malimal 模型来预测一个基于Smodial main roal road road romode romod roup sh romod roup roup romod roup roup roup lauts lax lax a lax a lax a ex a lauts a ex a ex a ex a ex a ex a ex a ex a ex a ex a ex a romod romod romod romod ex mod rout ex ex ex a rogild mod ex rogil rogild rogild rogild ex a rogres a ex ex ex rogil sal mods ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex

0
下载
关闭预览

相关内容

在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员