Deep Gaussian Processes (DGP) enable a non-parametric approach to quantify the uncertainty of complex deep machine learning models. Conventional inferential methods for DGP models can suffer from high computational complexity as they require large-scale operations with kernel matrices for training and inference. In this work, we propose an efficient scheme for accurate inference and prediction based on a range of Gaussian Processes, called the Tensor Markov Gaussian Processes (TMGP). We construct an induced approximation of TMGP referred to as the hierarchical expansion. Next, we develop a deep TMGP (DTMGP) model as the composition of multiple hierarchical expansion of TMGPs. The proposed DTMGP model has the following properties: (1) the outputs of each activation function are deterministic while the weights are chosen independently from standard Gaussian distribution; (2) in training or prediction, only O(polylog(M)) (out of M) activation functions have non-zero outputs, which significantly boosts the computational efficiency. Our numerical experiments on real datasets show the superior computational efficiency of DTMGP versus other DGP models.
翻译:深海高斯进程(DGP) 使一种非参数性的方法能够量化复杂深层机器学习模型的不确定性。 DGP模型的常规推断方法可能具有很高的计算复杂性,因为这些模型需要用内核矩阵进行大规模操作以进行培训和推断。在这项工作中,我们提出了一个基于一系列高斯进程(称为Tensor Markov Gaussian进程(TMGP))的准确推断和预测的有效计划。我们构建了一个称为等级扩张的TMGP诱导近似值。接下来,我们开发了一个深度的TMGP(DTMGP)模型,作为TMGP多重等级扩展的构成。提议的DTMGP模型具有以下特性:(1) 每种激活功能的输出是确定性的,而重量的选择独立于标准的高山分布;(2) 在培训或预测中,只有O(polylog(M) (M) 启动功能的输出为非零值,这大大提升了计算效率。我们在实际数据设置上进行的数字实验显示了DGPM相对于其他DGP模型的计算效率。