Model misspecification constitutes a major obstacle to reliable inference in many inverse problems. Inverse problems in seismology, for example, are particularly affected by misspecification of wave propagation velocities. In this paper, we focus on a specific seismic inverse problem - full-waveform moment tensor inversion - and develop a Bayesian framework that seeks robustness to velocity misspecification. A novel element of our framework is the use of transport-Lagrangian (TL) distances between observed and model predicted waveforms to specify a loss function, and the use of this loss to define a generalized belief update via a Gibbs posterior. The TL distance naturally disregards certain features of the data that are more sensitive to model misspecification, and therefore produces less biased or dispersed posterior distributions in this setting. To make the latter notion precise, we use several diagnostics to assess the quality of inference and uncertainty quantification, i.e., continuous rank probability scores and rank histograms. We interpret these diagnostics in the Bayesian setting and compare the results to those obtained using more typical Gaussian noise models and squared-error loss, under various scenarios of misspecification. Finally, we discuss potential generalizability of the proposed framework to a broader class of inverse problems affected by model misspecification.


翻译:例如,地震学的反面问题特别受到波浪传播速度的偏差影响。在本论文中,我们侧重于一个具体的地震反向问题――全波式瞬时反转,并开发一个巴伊西亚框架,以寻求对速度偏差的稳健性。我们框架的一个新内容是使用所观测到的和模型预测的波形之间的运输-拉格朗(TL)距离来指定损失函数,以及利用这种损失来界定通过Gibs 海报进行的普遍信仰更新。TL距离自然忽略了数据中某些对模型误差比较敏感的特征,因此在这一背景下产生偏差或分散的海面分布。为了使后一个概念精确化,我们用几种诊断来评估推断和不确定性量化的质量,即,连续的等级概率分数和直方形等。我们用Bayesian设置中的这些诊断方法来解释这些诊断结果,并且用更典型的Gibs 类更新结果来比较那些通过更典型的Gabs

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
55+阅读 · 2020年12月15日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
62+阅读 · 2020年3月4日
专知会员服务
162+阅读 · 2020年1月16日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Inference for Low-Rank Models
Arxiv
0+阅读 · 2021年7月6日
Posterior Covariance Information Criterion
Arxiv
0+阅读 · 2021年7月5日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
55+阅读 · 2020年12月15日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
62+阅读 · 2020年3月4日
专知会员服务
162+阅读 · 2020年1月16日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员