This article studies the asymptotic properties of Bayesian or frequentist estimators of a vector of parameters related to structural properties of sequences of graphs. The estimators studied originate from a particular class of graphex model introduced by Caron and Fox. The analysis is however performed here under very weak assumptions on the underlying data generating process, which may be different from the model of Caron and Fox or from a graphex model. In particular, we consider generic sparse graph models, with unbounded degree, whose degree distribution satisfies some assumptions. We show that one can relate the limit of the estimator of one of the parameters to the sparsity constant of the true graph generating process. When taking a Bayesian approach, we also show that the posterior distribution is asymptotically normal. We discuss situations where classical random graphs models such as configuration models, sparse graphon models, edge exchangeable models or graphon processes satisfy our assumptions.
翻译:文章研究了Bayesian 或Payesian 或Phonist 常客测算器与图表序列结构属性有关的参数矢量的无症状特性。 所研究的测算器来源于Caron 和 Fox 推出的某类图形模型模型模型。 然而,分析是在基础数据生成过程的非常薄弱的假设下进行的,这些假设可能不同于Caron 和 Fox 模型或图形模型。 特别是, 我们考虑的是通用的稀释图形模型, 其度没有限制, 其度分布满足一些假设。 我们显示, 一个人可以将其中某一参数的测算器的限度与真实图形生成过程的随机常数联系起来。 在采取Bayesian 方法时, 我们还可以表明, 后方分布是过于正常的。 我们讨论的是, 典型的随机图形模型, 如配置模型、 稀少的图形模型、 边缘可交换模型或图形过程满足我们假设的情况 。