Approximate Bayesian computation (ABC) is computationally intensive for complex model simulators. To exploit expensive simulations, data-resampling via bootstrapping can be employed to obtain many artificial datasets at little cost. However, when using this approach within ABC, the posterior variance is inflated, thus resulting in biased posterior inference. Here we use stratified Monte Carlo to considerably reduce the bias induced by data resampling. We also show empirically that it is possible to obtain reliable inference using a larger than usual ABC threshold. Finally, we show that with stratified Monte Carlo we obtain a less variable ABC likelihood. Ultimately we show how our approach improves the computational efficiency of the ABC samplers. We construct several ABC samplers employing our methodology, such as rejection and importance ABC samplers, and ABC-MCMC samplers. We consider simulation studies for static (Gaussian, g-and-k distribution, Ising model, astronomical model) and dynamic models (Lotka-Volterra). We compare against state-of-art sequential Monte Carlo ABC samplers, synthetic likelihoods, and likelihood-free Bayesian optimization. For a computationally expensive Lotka-Volterra case study, we found that our strategy leads to a more than 10-fold computational saving, compared to a sampler that does not use our novel approach.


翻译:Bayesian 附近的 Bayesian 计算(ABC ) 是在计算复杂的模型模拟器中密集的计算。 为了利用昂贵的模拟,可以通过靴子穿鞋进行数据取样,以低廉的成本获取许多人工数据集。 但是,在ABC内部使用这种方法时,后方差异会膨胀,从而产生偏颇的后方推论。 我们在这里使用分层的Monte Carlo, 以大量减少数据再抽样引出的偏差。 我们还从经验上表明,使用比通常的ABC阈值更大的ABC阈值获得可靠的样本推断是可能的。 最后,我们证明,通过分层的Monte Carlo,我们获得的ABC可能性较小。 我们最终展示了我们的方法如何提高ABC采样器的计算效率。 我们使用我们的方法,例如拒绝和重视ABC取样器,以及ABC-MC取样器。 我们考虑对静态的模拟研究(Gusian, g-k 和k 分布方式,Ising 模型,天文模型) 和动态模型(Lotka-Volterraralarala) 进行比我们州-Arestal 最廉价的BCreal Best 模型, 我们比较了一种比我们更自由的、更昂贵的Mestal Bestal- mactreal 的模型,我们找到一个比我们更有可能的AbCreal- mexbrasbrasbcrealbcreal 的模型,我们找到一个比较了一种比较了一种比较了一种比较了一种比较了一种比我们40的模型。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年12月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
117+阅读 · 2019年12月24日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年9月1日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年12月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
117+阅读 · 2019年12月24日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员