We introduce an information criterion, PCIC, for predictive evaluation based on quasi-posterior distributions. It is regarded as a natural generalisation of the widely applicable information criterion (WAIC) and can be computed via a single Markov chain Monte Carlo run. PCIC is useful in a variety of predictive settings that are not well dealt with in WAIC, including weighted likelihood inference and quasi-Bayesian prediction


翻译:我们引入了基于准别种分布的预测性评价信息标准PCIC, 即PCIC, 被视为对广泛适用的信息标准的自然概括,可以通过单一的Markov连链Monte Carlo 运行来计算。 PCIC在WAC没有很好处理的各种预测环境中非常有用,包括加权概率推断和准Bayesian预测。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
63+阅读 · 2021年6月22日
专知会员服务
16+阅读 · 2021年6月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
83+阅读 · 2020年6月21日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
已删除
将门创投
13+阅读 · 2019年4月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月6日
Arxiv
0+阅读 · 2021年9月5日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
已删除
将门创投
13+阅读 · 2019年4月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员