Magnetic Resonance Imaging (MRI) is a powerful technique employed for non-invasive in vivo visualization of internal structures. Sparsity is often deployed to accelerate the signal acquisition or overcome the presence of motion artifacts, improving the quality of image reconstruction. Image reconstruction algorithms use TV-regularized LASSO (Total Variation-regularized LASSO) to retrieve the missing information of undersampled signals, by cleaning the data of noise and while optimizing sparsity. A tuning parameter moderates the balance between these two aspects; its choice affecting the quality of the reconstructions. Currently, there is a lack of general deterministic techniques to choose these parameters, which are oftentimes manually selected and thus hinder the reliability of the reconstructions. Here, we present ALMA (Algorithm for Lagrange Multipliers Approximation), an iterative mathematics-inspired technique that computes tuning parameters for generalized LASSO problems during MRI reconstruction. We analyze quantitatively the performance of these parameters for imaging reconstructions via TV-LASSO in an MRI context on phantoms. Although our study concentrates on TV-LASSO, the techniques developed here hold significant promise for a wide array of applications. ALMA is not only adaptable to more generalized LASSO problems but is also robust to accommodate other forms of regularization beyond total variation. Moreover, it extends effectively to handle non-Cartesian sampling trajectories, broadening its utility in complex data reconstruction scenarios. More generally, ALMA provides a powerful tool for numerically solving constrained optimization problems across various disciplines, offering a versatile and impactful solution for advanced computational challenges.
翻译:暂无翻译