In this work we combine representation learning capabilities of neural network with agricultural knowledge from experts to model environmental heat and drought stresses. We first design deterministic expert models which serve as a benchmark and inform the design of flexible neural-network architectures. Finally, a sensitivity analysis of the latter allows a clustering of hybrids into susceptible and resistant ones.
翻译:在这项工作中,我们把神经网络的代表性学习能力与专家的农业知识结合起来,以模拟环境热和干旱压力。我们首先设计确定性专家模型,作为基准,为灵活的神经网络结构的设计提供参考。最后,对神经网络结构的敏感性分析使得混合体能够组合成易感染和耐抗性的结构。