In this work, we review and evaluate a body of deep learning knowledge tracing (DLKT) models with openly available and widely-used data sets, and with a novel data set of students learning to program. The evaluated DLKT models have been reimplemented for assessing reproducibility and replicability of previously reported results. We test different input and output layer variations found in the compared models that are independent of the main architectures of the models, and different maximum attempt count options that have been implicitly and explicitly used in some studies. Several metrics are used to reflect on the quality of the evaluated knowledge tracing models. The evaluated knowledge tracing models include Vanilla-DKT, two Long Short-Term Memory Deep Knowledge Tracing (LSTM-DKT) variants, two Dynamic Key-Value Memory Network (DKVMN) variants, and Self-Attentive Knowledge Tracing (SAKT). We evaluate logistic regression, Bayesian Knowledge Tracing (BKT) and simple non-learning models as baselines. Our results suggest that the DLKT models in general outperform non-DLKT models, and the relative differences between the DLKT models are subtle and often vary between datasets. Our results also show that naive models such as mean prediction can yield better performance than more sophisticated knowledge tracing models, especially in terms of accuracy. Further, our metric and hyperparameter analysis shows that the metric used to select the best model hyperparameters has a noticeable effect on the performance of the models, and that metric choice can affect model ranking. We also study the impact of input and output layer variations, filtering out long attempt sequences, and non-model properties such as randomness and hardware. Finally, we discuss model performance replicability and related issues. Our model implementations, evaluation code, and data are published as a part of this work.


翻译:在这项工作中,我们审查和评价了一组深学习知识追踪(DLKT)模型(DLKT)模型,这些模型具有公开可用和广泛使用的数据集,并有一套学生学习编程的新数据集。经过评估的DLKT模型已经重新实施,以评估先前报告的结果的可复制性和可复制性。我们测试了在比较模型中发现的不同输入和产出层差异,这些模型独立于模型的主要结构,以及在某些研究中隐含和明确使用的不同的最大尝试计算选项。使用了若干项指标来反映经评估的知识追踪模型的质量。经过评估的知识追踪模型包括Vanilla-DKT、两个长期记忆深度知识追踪(LSTM-DKT)变量、两个动态关键值记忆网络(DKVMN)变量和自增强知识追踪追踪(SAKT)模型。我们评估了物流回归、Bayesian知识追踪模型(BKT)和简单的非学习模型作为基线。我们的结果还评估了DLT模型在一般不完善的非LKT模型中的影响,我们的数据最终的运行和相对差异也展示了我们的数据。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员