Many reality tasks such as robot coordination can be naturally modelled as multi-agent cooperative system where the rewards are sparse. This paper focuses on learning decentralized policies for such tasks using sub-optimal demonstration. To learn the multi-agent cooperation effectively and tackle the sub-optimality of demonstration, a self-improving learning method is proposed: On the one hand, the centralized state-action values are initialized by the demonstration and updated by the learned decentralized policy to improve the sub-optimality. On the other hand, the Nash Equilibrium are found by the current state-action value and are used as a guide to learn the policy. The proposed method is evaluated on the combat RTS games which requires a high level of multi-agent cooperation. Extensive experimental results on various combat scenarios demonstrate that the proposed method can learn multi-agent cooperation effectively. It significantly outperforms many state-of-the-art demonstration based approaches.


翻译:机器人协调等许多现实任务可以自然地仿照多代理人合作系统,其回报微乎其微。本文件侧重于通过亚最佳示范学习分散化的政策。为了有效地学习多代理人合作并解决示范的亚最佳性,建议了一种自我改进学习方法:一方面,中央国家行动价值通过示范开始,然后通过学习的分散化政策加以更新,以改善亚优性。另一方面,Nash 平衡性是按当前状态行动价值发现的,并用作学习政策的指导。拟议的方法在战斗性RTS游戏上进行评估,这需要高水平的多代理人合作。关于各种战斗情景的广泛实验结果表明,拟议的方法可以有效地学习多代理人合作。它大大优于许多基于状态的示范方法。

0
下载
关闭预览

相关内容

【圣经书】《强化学习导论(2nd)》电子书与代码,548页pdf
专知会员服务
201+阅读 · 2020年5月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Cooperative Localization in Massive Networks
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月13日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
The StarCraft Multi-Agent Challenge
Arxiv
3+阅读 · 2019年2月11日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员