The (1+1)-evolution strategy (ES) with success-based step-size adaptation is analyzed on a general convex quadratic function and its monotone transformation, that is, $f(x) = g((x - x^*)^\mathrm{T} H (x - x^*))$, where $g:\mathbb{R}\to\mathbb{R}$ is a strictly increasing function, $H$ is a positive-definite symmetric matrix, and $x^* \in \mathbb{R}^d$ is the optimal solution of $f$. The convergence rate, that is, the decrease rate of the distance from a search point $m_t$ to the optimal solution $x^*$, is proven to be in $O(\exp( - L / \mathrm{Tr}(H) ))$, where $L$ is the smallest eigenvalue of $H$ and $\mathrm{Tr}(H)$ is the trace of $H$. This result generalizes the known rate of $O(\exp(- 1/d ))$ for the case of $H = I_{d}$ ($I_d$ is the identity matrix of dimension $d$) and $O(\exp(- 1/ (d\cdot\xi) ))$ for the case of $H = \mathrm{diag}(\xi \cdot I_{d/2}, I_{d/2})$. To the best of our knowledge, this is the first study in which the convergence rate of the (1+1)-ES is derived explicitly and rigorously on a general convex quadratic function, which depicts the impact of the distribution of the eigenvalues in the Hessian $H$ on the optimization and not only the impact of the condition number of $H$.
翻译:(1+1) - 革命战略(ES), 成功基于步数调整, 以普通 convex 二次函数及其单色变换来分析, 即 $f(x) = g (xxxxxxxx) = mathrm{T} H(x-xx)) 美元, 其中 $:\ mathbb{R} 严格增加功能, $H 是一个正- 确定对称矩阵基质, $x {x}\ in\ mathb{R} 美元是美元的最佳解决办法。 趋同率, 即从搜索点到最佳解决办法的距离递减 $_ t$x} 美元 (xxxxx) 美元, 其中 $(L/ entxxxxxxxxxx), 美元是美元平价的美元=xxxxx=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx