We introduce the game of infinite Hex, extending the familiar finite game to natural play on the infinite hexagonal lattice. Whereas the finite game is a win for the first player, we prove in contrast that infinite Hex is a draw -- both players have drawing strategies. Meanwhile, the transfinite game-value phenomenon, now abundantly exhibited in infinite chess and infinite draughts, regrettably does not arise in infinite Hex; only finite game values occur. Indeed, every game-valued position in infinite Hex is intrinsically local, meaning that winning play depends only on a fixed finite region of the board. This latter fact is proved under very general hypotheses, establishing the conclusion for all simple stone-placing games.
翻译:我们引入了无穷的六重心游戏游戏, 将熟悉的有限游戏扩大到无限六重心上的自然游戏。 虽然有限游戏是第一位玩家的赢家, 但我们却证明, 无限的六重心游戏是一幅绘画, 两个玩家都有绘画策略。 与此同时, 极无穷的游戏价值现象, 现已在无限的象棋和无限的拖累中表现出来, 遗憾的是, 无限的六重心游戏没有出现; 只有有限的游戏价值。 事实上, 无限的六重心游戏的每一个位置都是局部的, 意味着赢家的游戏都取决于棋盘中固定的有限区域。 后一个事实在非常笼统的假设下得到了证明, 为所有简单的石头铸造游戏做出结论。