We introduce Bayesian Probability Theory to investigate uncertainty propagation based on meta-models. We approach the problem from the perspective of data analysis, with a given (however almost-arbitrary) input probability distribution and a given "training" set of computer simulations. While proven mathematically to be the unique consistent probability calculus, the subject of this paper is not to demonstrate beauty but usefulness. We explicitly list all propositions and lay open the general structure of any uncertainty propagation based on meta-models. The former allows rigorous treatment at any stage, while the latter allows us to quantify the interaction of the surrogate uncertainties with the usual parameter uncertainties. Additionally, we show a simple way to implicitly include spatio-temporal correlations. We then apply the framework jointly to a family of generalized linear meta-model that implicitly includes Polynomial Chaos Expansions as a special case. While we assume a Gaussian surrogate-uncertainty, we do not assume a scale for the surrogate uncertainty to be known, i.e. a Student-t. We end up with semi-analytic formulas for surrogate uncertainties and uncertainty propagation


翻译:我们引入贝叶斯概率理论, 调查基于元模型的不确定性传播。 我们从数据分析的角度来研究这一问题, 使用特定( 几乎任意的) 输入概率分布和特定“ 培训” 计算机模拟。 虽然从数学上证明这是唯一一致的概率计算法, 但本文的主题不是展示美貌, 而是有用。 我们明确列出所有提议, 并开放基于元模型的任何不确定性传播的一般结构。 前者允许在任何阶段严格处理, 而后者允许我们量化替代不确定性与通常参数不确定性的相互作用。 此外, 我们展示了一种简单的方法, 隐含地包括线性- 时空相关性。 我们然后将这个框架联合应用到一个普遍的线性元模型中, 隐含着将混杂混杂混杂混杂杂杂杂杂物扩展作为一个特殊案例。 我们假设高斯代代谢的代孕- 不确定- 不确定因素, 即学生-, 我们最终以半解性公式 来测量不确定性和感变异性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
113+阅读 · 2020年10月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Loss Estimators Improve Model Generalization
Arxiv
0+阅读 · 2021年3月5日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
6+阅读 · 2018年2月28日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
113+阅读 · 2020年10月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员