We present a comprehensive study on the emergence of Computational Social Science (CSS) - an interdisciplinary field leveraging computational methods to address social science questions - and its impact on adjacent social sciences. We trained a robust CSS classifier using papers from CSS-focused venues and applied it to 11 million papers spanning 1990 to 2021. Our analysis yielded three key findings. First, there were two critical inflections in the rise of CSS. The first occurred around 2005 when psychology, politics, and sociology began engaging with CSS. The second emerged in approximately 2014 when economics finally joined the trend. Sociology is currently the most engaged with CSS. Second, using the density of yearly knowledge embeddings constructed by advanced transformer models, we observed that CSS initially lacked a cohesive identity. From the early 2000s to 2014, however, it began to form a distinct cluster, creating boundaries between CSS and other social sciences, particularly in politics and sociology. After 2014, these boundaries faded, and CSS increasingly blended with the social sciences. Third, shared data-driven methods homogenized CSS papers across disciplines, with politics and economics showing the most alignment due to the combined influence of CSS and causal identification. Nevertheless, non-CSS papers in sociology, psychology, and politics became more divergent. Taken together, these findings highlight the dynamics of division and unity as new disciplines emerge within existing knowledge landscapes. A live demo of CSS evolution can be found in https://evolution-css.netlify.app/
翻译:暂无翻译