Neuronal systems need to process temporal signals. We here show how higher-order temporal (co-)fluctuations can be employed to represent and process information. Concretely, we demonstrate that a simple biologically inspired feedforward neuronal model is able to extract information from up to the third order cumulant to perform time series classification. This model relies on a weighted linear summation of synaptic inputs followed by a nonlinear gain function. Training both - the synaptic weights and the nonlinear gain function - exposes how the non-linearity allows for the transfer of higher order correlations to the mean, which in turn enables the synergistic use of information encoded in multiple cumulants to maximize the classification accuracy. The approach is demonstrated both on a synthetic and on real world datasets of multivariate time series. Moreover, we show that the biologically inspired architecture makes better use of the number of trainable parameters as compared to a classical machine-learning scheme. Our findings emphasize the benefit of biological neuronal architectures, paired with dedicated learning algorithms, for the processing of information embedded in higher-order statistical cumulants of temporal (co-)fluctuations.
翻译:神经神经系统需要处理时间信号。 我们在这里展示了如何使用更高顺序的时间( 共) 变化结构来代表和处理信息。 具体地说, 我们证明一个简单的生物学启发的进化前神经神经模型能够从最高至第三顺序累积中提取信息, 以进行时间序列分类。 这个模型依赖于对合成输入物的加权线性汇总, 并随后产生非线性增益功能。 培训―― 合成重量和非线性增益功能 - 暴露了非线性允许将更高顺序的关联转换为平均值, 从而能够协同使用在多个蓄积物中编码的信息, 以最大限度地提高分类准确性。 这个方法在合成和多变数时间序列真实世界数据集上都得到了证明。 此外, 我们显示, 生物学启发的架构可以更好地利用可训练参数的数量, 与经典的机器学习计划相比。 我们的研究结果强调生物神经结构的好处, 与专门的学习算法相结合, 用于处理高阶结构中所含的数据。