There are two types of deep generative models: explicit and implicit. The former defines an explicit density form that allows likelihood inference; while the latter targets a flexible transformation from random noise to generated samples. While the two classes of generative models have shown great power in many applications, both of them, when used alone, suffer from respective limitations and drawbacks. To take full advantages of both models and enable mutual compensation, we propose a novel joint training framework that bridges an explicit (unnormalized) density estimator and an implicit sample generator via Stein discrepancy. We show that our method 1) induces novel mutual regularization via kernel Sobolev norm penalization and Moreau-Yosida regularization, and 2) stabilizes the training dynamics. Empirically, we demonstrate that proposed method can facilitate the density estimator to more accurately identify data modes and guide the generator to output higher-quality samples, comparing with training a single counterpart. The new approach also shows promising results when the training samples are contaminated or limited.


翻译:有两种深层基因模型:直隐型和隐含型。前者界定了一种明确的密度形式,允许可能的推断;后者针对从随机噪音到生成样品的灵活转变。虽然这两类基因模型在许多应用中表现出巨大的力量,但两者单独使用时都有各自的局限性和缺点。为了充分利用两种模型的优势,并促成相互补偿,我们提议了一个新的联合培训框架,将一个(非常规的)显性密度估计仪和一个通过斯坦因差异的隐性样本生成器连接起来。我们表明,我们的方法1(通过内尔·索博勒夫规范的处罚和莫索乌-约斯达规范化和2)带来了新的相互规范化,稳定了培训动态。我们同时表明,拟议的方法可以促进密度估计器更准确地确定数据模式,指导生成者输出质量更高的样品,与培训对象相比较。在培训样品受到污染或限制时,新的方法还显示了有希望的结果。

0
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
68+阅读 · 2020年10月24日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关VIP内容
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
68+阅读 · 2020年10月24日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员