Intelligent and adaptive online education systems aim to make high-quality education available for a diverse range of students. However, existing systems usually depend on a pool of hand-made questions, limiting how fine-grained and open-ended they can be in adapting to individual students. We explore targeted question generation as a controllable sequence generation task. We first show how to fine-tune pre-trained language models for deep knowledge tracing (LM-KT). This model accurately predicts the probability of a student answering a question correctly, and generalizes to questions not seen in training. We then use LM-KT to specify the objective and data for training a model to generate questions conditioned on the student and target difficulty. Our results show we succeed at generating novel, well-calibrated language translation questions for second language learners from a real online education platform.
翻译:智能和适应性的在线教育系统旨在为各类学生提供高质量的教育,然而,现有系统通常依赖于一批手工制作的问题,限制微小和开放的系统在适应个别学生方面如何能适应个别学生。我们探索有针对性地生成问题,以此作为可控制的序列生成任务。我们首先展示如何微调受过训练的深入知识追踪语言模型(LM-KT)。这一模型准确地预测了学生正确回答问题的可能性,并概括了在培训中看不到的问题。我们然后使用LM-KT来说明培训模式的目标和数据,以产生以学生和目标困难为条件的问题。我们的结果显示,我们成功地从真正的在线教育平台为第二语言学习者制作了新颖的、有条理的语言翻译问题。