Data augmentation is commonly applied to improve performance of deep learning by enforcing the knowledge that certain transformations on the input preserve the output. Currently, the correct data augmentation is chosen by human effort and costly cross-validation, which makes it cumbersome to apply to new datasets. We develop a convenient gradient-based method for selecting the data augmentation. Our approach relies on phrasing data augmentation as an invariance in the prior distribution and learning it using Bayesian model selection, which has been shown to work in Gaussian processes, but not yet for deep neural networks. We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective, which can be optimised without human supervision or validation data. We show that our method can successfully recover invariances present in the data, and that this improves generalisation on image datasets.
翻译:数据扩增通常用于通过执行投入的某些转换保存输出的知识来提高深层学习的绩效。 目前,正确的数据扩增是通过人类的努力和昂贵的交叉校验选择的,这使得新数据集难以应用。 我们开发了一种方便的梯度方法来选择数据扩增。 我们的方法依靠将数据扩增作为先前分配中的变数,并使用巴伊西亚模式选择来学习数据扩增,这在高西亚进程已经证明是有效的,但对于深神经网络来说并非如此。 我们使用与边际可能性不同的Kronecker-mactored Laplace近似值作为我们的目标,在没有人类监督或验证数据的情况下可以优化。 我们表明,我们的方法可以成功地恢复数据中的变数,这可以改进图像数据集的概括性。