Medical dialogue generation is an important yet challenging task. Most previous works rely on the attention mechanism and large-scale pretrained language models. However, these methods often fail to acquire pivotal information from the long dialogue history to yield an accurate and informative response, due to the fact that the medical entities usually scatters throughout multiple utterances along with the complex relationships between them. To mitigate this problem, we propose a medical response generation model with Pivotal Information Recalling (MedPIR), which is built on two components, i.e., knowledge-aware dialogue graph encoder and recall-enhanced generator. The knowledge-aware dialogue graph encoder constructs a dialogue graph by exploiting the knowledge relationships between entities in the utterances, and encodes it with a graph attention network. Then, the recall-enhanced generator strengthens the usage of these pivotal information by generating a summary of the dialogue before producing the actual response. Experimental results on two large-scale medical dialogue datasets show that MedPIR outperforms the strong baselines in BLEU scores and medical entities F1 measure.
翻译:医疗对话的产生是一项重要而又具有挑战性的任务。 以往的多数工作都依赖于关注机制和大规模预先培训的语言模式。 但是,由于医疗实体通常随彼此之间的复杂关系分散在多个语句中,因此,这些方法往往无法从长期对话历史中获得关键信息,从而得出准确和内容丰富的反应。为了缓解这一问题,我们建议采用一个医疗反应生成模型,由Pivotal Information Agress (MedPIR) 组成,该模型以两个组成部分为基础,即知识觉悟对话图编码器和回溯强化生成器。 知识觉对话图编码器通过利用语句中各实体之间的知识关系来构建一个对话图表,并用图形关注网络将其编码起来。 之后, 重新收集的生成器通过在产生实际反应之前生成对话摘要来加强这些关键信息的使用。 两个大规模医疗对话数据集的实验结果显示, MedPIR 超越了BLEE分数和F1计量的医疗实体的强基线。