We consider a distributed estimation method in a setting with heterogeneous streams of correlated data distributed across nodes in a network. In the considered approach, linear models are estimated locally (i.e., with only local data) subject to a network regularization term that penalizes a local model that differs from neighboring models. We analyze computation dynamics (associated with stochastic gradient updates) and information exchange (associated with exchanging current models with neighboring nodes). We provide a finite-time characterization of convergence of the weighted ensemble average estimate and compare this result to federated learning, an alternative approach to estimation wherein a single model is updated by locally generated gradient updates. This comparison highlights the trade-off between speed vs precision: while model updates take place at a faster rate in federated learning, the proposed networked approach to estimation enables the identification of models with higher precision. We illustrate the method's general applicability in two examples: estimating a Markov random field using wireless sensor networks and modeling prey escape behavior of flocking birds based on a publicly available dataset.


翻译:在一个网络中,我们考虑一种分布式估计方法,在一个网络中分布于各节点之间的相关数据流的设置中。在考虑的方法中,线性模型是按网络正规化术语估算的(即只有当地数据),该术语对不同于邻近模型的本地模型进行处罚。我们分析计算动态(与随机梯度更新相联系)和信息交流(与相邻节点交换当前模型相联系)。我们提供了加权混合组合平均估计值趋同的有限时间特征描述,并将这一结果与联合学习进行比较,这是一种替代估算方法,即由本地生成的梯度更新来更新单一模型。这一比较突出了速度与精确之间的权衡:虽然模型更新以更快的速度进行,但拟议的网络化估算方法能够更精确地识别模型。我们用两个例子来说明该方法的一般适用性:使用无线传感器网络估算Markov随机字段,以及根据公开提供的数据集模拟鸟类群鸟的捕食逃逸行为。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
106+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月31日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员