With the increasing computing power of edge devices, Federated Learning (FL) emerges to enable model training without privacy concerns. The majority of existing studies assume the data are fully labeled on the client side. In practice, however, the amount of labeled data is often limited. Recently, federated semi-supervised learning (FSSL) is explored as a way to effectively utilize unlabeled data during training. In this work, we propose ProtoFSSL, a novel FSSL approach based on prototypical networks. In ProtoFSSL, clients share knowledge with each other via lightweight prototypes, which prevents the local models from diverging. For computing loss on unlabeled data, each client creates accurate pseudo-labels based on shared prototypes. Jointly with labeled data, the pseudo-labels provide training signals for local prototypes. Compared to a FSSL approach based on weight sharing, the prototype-based inter-client knowledge sharing significantly reduces both communication and computation costs, enabling more frequent knowledge sharing between more clients for better accuracy. In multiple datasets, ProtoFSSL results in higher accuracy compared to the recent FSSL methods with and without knowledge sharing, such as FixMatch, FedRGD, and FedMatch. On SVHN dataset, ProtoFSSL performs comparably to fully supervised FL methods.


翻译:随着边际装置的计算能力日益增强,联邦学习联合会(FL)将出现,以便能够在没有隐私关切的情况下进行示范培训。大多数现有研究都假定数据完全贴在客户一方。但在实践中,标签数据的数量往往有限。最近,联合会半监督学习(FSSL)被探索,作为在培训期间有效利用无标签数据的一种方法。在这项工作中,我们提议采用基于原型网络的新型FSSL(FSSL)方法,即基于原型网络的新型FSSL(ProtoFSL)方法;在ProtoFSS(FSL)中,客户通过轻量级原型相互共享知识,防止本地模型的差异。在计算无标签数据的损失时,每个客户都根据共享原型创建准确的假标签。与标签数据联合,假标签为本地原型提供了培训信号。与基于权重共享的FSSL(SL)方法相比,原型客户间知识共享大大降低了通信和计算成本,使更多客户之间更频繁地分享知识,以便提高准确性。在多个数据集中,ProtoFSL(FSL)与最近的FSL(FSL)方法相比,不完全共享。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2018年9月23日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
27+阅读 · 2020年6月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2018年9月23日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员