Functional principal component analysis has become the most important dimension reduction technique in functional data analysis. Based on B-spline approximation, functional principal components (FPCs) can be efficiently estimated by the expectation-maximization (EM) and the geometric restricted maximum likelihood (REML) algorithms under the strong assumption of Gaussianity on the principal component scores and observational errors. When computing the solution, the EM algorithm does not exploit the underlying geometric manifold structure, while the performance of REML is known to be unstable. In this article, we propose a conjugate gradient algorithm over the product manifold to estimate FPCs. This algorithm exploits the manifold geometry structure of the overall parameter space, thus improving its search efficiency and estimation accuracy. In addition, a distribution-free interpretation of the loss function is provided from the viewpoint of matrix Bregman divergence, which explains why the proposed method works well under general distribution settings. We also show that a roughness penalization can be easily incorporated into our algorithm with a potentially better fit. The appealing numerical performance of the proposed method is demonstrated by simulation studies and the analysis of a Type Ia supernova light curve dataset.
翻译:功能主元件分析已成为功能数据分析中最重要的减少维度技术。根据B-spline近似值,功能主元件(FCCs)可以通过预期-最大度(EM)和在主要元件评分和观察误差的强烈假设下,根据高斯尼特对主要元件评分和观测误差的几何限制最大可能性(REML)算法进行有效估计。当计算解决方案时,EM算法没有利用基本几何方位数结构,而REML的性能已知是不稳定的。在本篇文章中,我们提议对产品元数进行同化梯度算法,以估计FPCs。这一算法利用了整个参数空间的多重几何结构,从而提高了搜索效率和估计准确性。此外,从矩阵布雷格曼差异的角度提供了损失函数的无分布解释,这解释了为什么拟议的方法在一般分布环境中运作良好。我们还表明,粗度惩罚很容易纳入我们的算法中,而且可能更合适。模拟研究和分析Ia型超新光曲线数据显示,拟议的方法具有吸引力的数字性。