In this article, we consider a class of finite rank perturbations of Toeplitz operators that have simple eigenvalues on the unit circle. Under a suitable assumption on the behavior of the essential spectrum, we show that such operators are power bounded. The problem originates in the approximation of hyperbolic partial differential equations with boundary conditions by means of finite difference schemes. Our result gives a positive answer to a conjecture by Trefethen, Kreiss and Wu that only a weak form of the so-called Uniform Kreiss-Lopatinskii Condition is sufficient to imply power boundedness.
翻译:在本篇文章中,我们考虑的是Teplitz操作员在单位圆上具有简单电子价值的有限等级扰动类别。 在对基本频谱行为的适当假设下,我们显示这些操作员是受电源约束的。 问题起源于通过有限差异计划将双曲部分差异方程式与边界条件相近。 我们的结果对Trefethen、Kreiss和Wu的预测给出了肯定的答案,即只有一种微弱的所谓统一Kreiss-Lopatinskii状态才足以暗示权力约束。