This paper studies the complexity for finding approximate stationary points of nonconvex-strongly-concave (NC-SC) smooth minimax problems, in both general and averaged smooth finite-sum settings. We establish nontrivial lower complexity bounds of $\Omega(\sqrt{\kappa}\Delta L\epsilon^{-2})$ and $\Omega(n+\sqrt{n\kappa}\Delta L\epsilon^{-2})$ for the two settings, respectively, where $\kappa$ is the condition number, $L$ is the smoothness constant, and $\Delta$ is the initial gap. Our result reveals substantial gaps between these limits and best-known upper bounds in the literature. To close these gaps, we introduce a generic acceleration scheme that deploys existing gradient-based methods to solve a sequence of crafted strongly-convex-strongly-concave subproblems. In the general setting, the complexity of our proposed algorithm nearly matches the lower bound; in particular, it removes an additional poly-logarithmic dependence on accuracy present in previous works. In the averaged smooth finite-sum setting, our proposed algorithm improves over previous algorithms by providing a nearly-tight dependence on the condition number.
翻译:本文研究在一般和平均平滑的有限和总和设置中,找到非混凝土(NC-SC)平滑小型问题(NC-kapa)的大致固定点的复杂程度。 我们为这两个设置分别确定了非三进制低的复杂程度,即Omega(sqrt_kappa ⁇ DeltaLépsilon ⁇ -2}美元和Omega(nçqrt{kapa ⁇ DeltaLépsilon ⁇ -2})美元。 在这两个设置中,美元是条件数,美元是平滑常常数,美元是初始差距。 我们的结果显示这些限制与文献中最知名的上限之间存在巨大差距。 为了缩小这些差距,我们引入了一个通用加速计划,利用现有的基于梯度的方法来解决精心设计的精度强精度精度精度精度的亚质子问题。 在一般设置中,我们提议的算法的复杂性几乎与较低约束值相匹配; 特别是,它消除了我们先前的平滑度算法上的额外依赖性。