We employ a canonical variational framework for the predictive characterization of structural instabilities that develop during the diffusion-driven transient swelling of hydrogels under geometrical constraints. The variational formulation of finite elasticity coupled with Fickian diffusion has a two-field minimization structure, wherein the deformation map and the fluid-volume flux are obtained as minimizers of a time-discrete potential involving internal and external energetic contributions. Following spatial discretization, the minimization principle is implemented using a conforming Q$_1$RT$_0$ finite-element design, making use of the lowest-order Raviart-Thomas-type interpolations for the fluid-volume flux. To analyze the structural stability of a certain equilibrium state of the gel satisfying the minimization principle, we apply the local stability criterion on the incremental potential, which is based on the idea that a stable equilibrium state has the lowest potential energy among all possible states within an infinitesimal neighborhood. Using this criterion, it is understood that bifurcation-type structural instabilities are activated when the coupled global finite-element stiffness matrix loses its positive definiteness. This concept is then applied to determine the onset and nature of wrinkling instabilities occurring in a pair of representative film-substrate hydrogel systems. In particular, we analyze the dependencies of the critical buckling load and mode shape on the system geometry and material parameters.
翻译:我们使用一个可变性框架来预测在几何限制下,在水凝体扩散驱动的瞬变变膨胀期间形成的结构性不稳定的预测性特征。 有限弹性的变化配方加上Fickian的扩散具有两层最小化结构,在这个结构中,变形图和流体流流流流流流是作为时间差异潜力最小化的最小化者获得的,其中涉及内部和外部的能量贡献。 在空间分解后,采用一个符合Q$_1美元 RT$_0美元有限元素设计的最小化原则,对流体流体流体流体流动采用最低级Raviart-Thomas型干涉法。为了分析某种平衡状态的结构稳定性结构的最小化结构,我们用当地稳定性标准来衡量递增潜力,其依据的理念是,稳定性平衡状态在极小的周边所有可能国家中具有最低的潜在能量。 使用这一标准可以理解,当结合的全球稳定-硫-硫化-T-T-T-II型结构对流体流体流体流体流体流体流体流体流体流体流体流体流体流体变化的精确度概念时,我们将固定化的稳性结构结构会失去固定性。