In this paper, we consider multi-robot localization problems with focus on cooperative localization and observability analysis of relative pose estimation. For cooperative localization, there is extra information available to each robot via communication network and message passing. If odometry data of a target robot can be transmitted to the ego-robot then the observability of their relative pose estimation can be achieved by range-only or bearing-only measurements provided both of their linear velocities are non-zero. If odometry data of a target robot is not directly transmitted but estimated by the ego-robot then there must be both range and bearing measurements to guarantee the observability of relative pose estimation. For ROS/Gazebo simulations, we consider four different sensing and communication structures in which extended Kalman filtering (EKF) and pose graph optimization (PGO) estimation with different robust loss functions (filtering and smoothing with different batch sizes of sliding window) are compared in terms of estimation accuracy. For hardware experiments, two Turtlebot3 equipped with UWB modules are used for real-world inter-robot relative pose estimation, in which both EKF and PGO are applied and compared.
翻译:暂无翻译