Surface matching usually provides significant deformations that can lead to structural failure due to the lack of physical policy. In this context, partial surface matching of non-linear deformable bodies is crucial in engineering to govern structure deformations. In this article, we propose to formulate the registration problem as an optimal control problem using an artificial neural network where the unknown is the surface force distribution that applies to the object and the resulting deformation computed using a hyper-elastic model. The optimization problem is solved using an adjoint method where the hyper-elastic problem is solved using the feed-forward neural network and the adjoint problem is obtained through the backpropagation of the network. Our process improves the computation speed by multiple orders of magnitude while providing acceptable registration errors.
翻译:平面比对通常提供显著的变形,可导致结构失灵,因为缺乏物理政策。在这方面,非线性变形机体的局部表面比对对于管理结构变形的工程至关重要。在本条中,我们提议将登记问题表述为最佳控制问题,使用人工神经网络,其中未知是适用于物体的表面力分布,并使用超弹性模型计算由此造成的变形。优化问题采用联合方法解决,即使用进料前神经网络解决超弹性问题,通过网络的反向调整获得连带问题。我们的程序在提供可接受的登记错误的同时,通过多个数量级提高计算速度。</s>