We provide a simple and natural solution to the problem of generating all $2^n \cdot n!$ signed permutations of $[n] = \{1,2,\ldots,n\}$. Our solution provides a pleasing generalization of the most famous ordering of permutations: plain changes (Steinhaus-Johnson-Trotter algorithm). In plain changes, the $n!$ permutations of $[n]$ are ordered so that successive permutations differ by swapping a pair of adjacent symbols, and the order is often visualized as a weaving pattern involving $n$ ropes. Here we model a signed permutation using $n$ ribbons with two distinct sides, and each successive configuration is created by twisting (i.e., swapping and turning over) two neighboring ribbons or a single ribbon. By greedily prioritizing $2$-twists of the largest symbol before $1$-twists of the largest symbol, we create a signed version of plain change's memorable zig-zag pattern. We provide a loopless algorithm (i.e., worst-case $\mathcal{O}(1)$-time per object) by extending the well-known mixed-radix Gray code algorithm.
翻译:暂无翻译