Massive random access of devices in the emerging Open Radio Access Network (O-RAN) brings great challenge to the access control and management. Exploiting the bursting nature of the access requests, sparse active user detection (SAUD) is an efficient enabler towards efficient access management, but the sparsity might be deteriorated in case of uncoordinated massive access requests. To dynamically preserve the sparsity of access requests, a reinforcement-learning (RL)-assisted scheme of closed-loop access control utilizing the access class barring technique is proposed, where the RL policy is determined through continuous interaction between the RL agent, i.e., a next generation node base (gNB), and the environment. The proposed scheme can be implemented by the near-real-time RAN intelligent controller (near-RT RIC) in O-RAN, supporting rapid switching between heterogeneous vertical applications, such as mMTC and uRLLC services. Moreover, a data-driven scheme of deep-RL-assisted SAUD is proposed to resolve highly complex environments with continuous and high-dimensional state and action spaces, where a replay buffer is applied for automatic large-scale data collection. An actor-critic framework is formulated to incorporate the strategy-learning modules into the near-RT RIC. Simulation results show that the proposed schemes can achieve superior performance in both access efficiency and user detection accuracy over the benchmark scheme for different heterogeneous services with massive access requests.


翻译:正在兴起的开放电台接入网络(O-RAN)的大规模随机访问设备给出入控制和管理带来了巨大的挑战。 探索访问请求的破灭性质,主动用户检测(SAUD)是高效访问管理的一个有效促进器,但若出现未经协调的大规模访问请求,这种系统可能更加松散。 为了动态地保持访问请求的广度,提议了一个利用访问舱限制技术的闭路访问控制强化学习(RL)辅助计划,其中通过RL代理(即下一代节点基地(GNB))和环境之间的持续互动来确定访问控制政策。拟议的计划可由O-RAN的近实时RAN智能控制器(Near-RT RIC)实施,支持混合的纵向应用程序(如MMTC和URLLC服务)之间的快速转换。此外,还提议了一个由数据驱动的深路辅助SAUD计划,以持续和高维度状态和行动空间解决高度复杂的环境问题,即下一代节点基础(GNB)和环境。拟议的计划可以由ODL智能缓冲计划实施,在OLS-RBURal-Real Recal recal realal recal recal recal real real recaling sal resulation 要求中自动进行大规模访问要求。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
66+阅读 · 2022年4月13日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员