Deterministic $K$-identification (DKI) is addressed for Gaussian channels with slow fading (GSF), where the transmitter is restricted to an average power constraint and channel side information is available at the decoder. We derive lower and upper bounds on the DKI capacity when the number identifiable messages $K$ may grow with the codeword length $n$. As a key finding, we establish that for deterministic encoding, the codebook size scales as $2^{(n\log n)R}$ assuming that the number of identifiable messages scales as $K = 2^{\kappa \log n}$, where $R$ is the coding rate and $\kappa \in [0,1)$ is the identification target rate.
翻译:确定值 $ $- 确定值 (DKI) 是针对低速下降(GSF)的高斯海峡频道(GSF), 发报器限于平均功率限制, 解码器可提供频道侧信息 。 当可识别信息的数量随着代码字的长度( $ $) 增长时, 我们从 DKI 能力获得下限和上限 $ $ 。 作为关键结论, 我们确定对于确定值编码, 代码规模为 2 ⁇ (n\log n) R}, 假设可识别的信息比例为 $ = 2 ⁇ kappa \ log n} $, $ 是 编码率, $\ kapa $ = 0. 1 美元是确定目标率 。