Team assembly is a problem that demands trade-offs between multiple fairness criteria and computational optimization. We focus on four criteria: (i) fair distribution of workloads within the team, (ii) fair distribution of skills and expertise regarding project requirements, (iii) fair distribution of protected classes in the team, and (iv) fair distribution of the team cost among protected classes. For this problem, we propose a two-stage algorithmic solution. First, a multi-objective optimization procedure is executed and the Pareto candidates that satisfy the project requirements are selected. Second, N random groups are formed containing combinations of these candidates, and a second round of multi-objective optimization is executed, but this time for selecting the groups that optimize the team-assembly criteria. We also discuss the conflicts between those objectives when trying to understand the impact of fairness constraints in the utility associated with the formed team.
翻译:暂无翻译