Stabbing Planes (also known as Branch and Cut) is a proof system introduced very recently which, informally speaking, extends the DPLL method by branching on integer linear inequalities instead of single variables. The techniques known so far to prove size and depth lower bounds for Stabbing Planes are generalizations of those used for the Cutting Planes proof system established via communication complexity arguments. As such they work for the lifted version of combinatorial statements. Rank lower bounds for Cutting Planes are also obtained by geometric arguments called protection lemmas. In this work we introduce two new geometric approaches to prove size/depth lower bounds in Stabbing Planes working for any formula: (1) the antichain method, relying on Sperner's Theorem and (2) the covering method which uses results on essential coverings of the boolean cube by linear polynomials, which in turn relies on Alon's combinatorial Nullenstellensatz. We demonstrate their use on classes of combinatorial principles such as the Pigeonhole principle, the Tseitin contradictions and the Linear Ordering Principle. By the first method we prove almost linear size lower bounds and optimal logarithmic depth lower bounds for the Pigeonhole principle and analogous lower bounds for the Tseitin contradictions over the complete graph and for the Linear Ordering Principle. By the covering method we obtain a superlinear size lower bound and a logarithmic depth lower bound for Stabbing Planes proof of Tseitin contradictions over a grid graph.
翻译:Starbing Planes(也称为Breaty and Cut)是最近推出的一个验证系统,它非正式地说,通过对整线线性不平等而不是单一变量进行分流,扩展DPLL方法。迄今为止,用来证明Stabing Plans的尺寸和深度较低界限的已知技术是通过通信复杂参数建立的剪切平板校准系统所使用的方法的概括性。因此,它们用于取消版的组合式语句。剪切平板的下边框也通过称为保护色素的几何参数获得。在这项工作中,我们引入了两种新的几何方法,以证明Stabing Plans的大小/深度较低界限,而不是为任何公式工作:(1) 抗链法,依靠Sperner的理论和(2) 覆盖Stabbing Plansidelines, 覆盖线性多线性多线性立方形立方形立方块基本覆盖的布局。我们用它们用于诸如Sigonhole 原则、Tsetin自下线性定序原则等组合的分类和下层校正程原则。我们用直线性平式平面法,为最下线性平面平的逻辑,为最下线性平面平面平整。我们用直线性平的平的平的平的平的平面法绑定法,我们用在最下平的平的平的平的平的平的平的平的平的平的平面法,在最深的平面的平面的平面的平面的平的平面法。