Let $\mathbb{Z}_{p}$ be the ring of residue classes modulo a prime $p$. The $\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-additive cyclic codes of length $(\alpha,\beta)$ is identify as $\mathbb{Z}_{p}[u,v][x]$-submodule of $\mathbb{Z}_{p}[x]/\langle x^{\alpha}-1\rangle \times \mathbb{Z}_{p}[u,v][x]/\langle x^{\beta}-1\rangle$ where $\mathbb{Z}_{p}[u,v]=\mathbb{Z}_{p}+u\mathbb{Z}_{p}+v\mathbb{Z}_{p}$ with $u^{2}=v^{2}=uv=vu=0$. In this article, we obtain the complete sets of generator polynomials, minimal generating sets for cyclic codes with length $\beta$ over $\mathbb{Z}_{p}[u,v]$ and $\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-additive cyclic codes with length $(\alpha,\beta)$ respectively. We show that the Gray image of $\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-additive cyclic code with length $(\alpha,\beta)$ is either a QC code of length $4\alpha$ with index $4$ or a generalized QC code of length $(\alpha,3\beta)$ over $\mathbb{Z}_{p}$. Moreover, some structural properties like generating polynomials, minimal generating sets of $\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-additive constacyclic code with length $(\alpha,p-1)$ are determined.
翻译:在本文中,假设$\mathbb{Z}_{p}$是模素数$p$的剩余类的环。长度为$(\alpha,\beta)$的$\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-加法循环码被确定为$\mathbb{Z}_{p}[u,v][x]$-子模型,在其中$x^{\alpha}-1$和$x^{\beta}-1$是模$\mathbb{Z}_{p}[x]$和$\mathbb{Z}_{p}[u,v][x]$的理想。在本文中,我们获得了循环码和$\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-加法循环码的生成多项式完整集和生成最小集。我们证明了$\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-加法循环码的格雷映像既可以是长度为$4\alpha$和指数为$4$的$\mathbb{Z}_{p}$QC码,也可以是长度为$(\alpha,3\beta)$和指数为$p$的广义QC码。此外,我们确定了长度为$(\alpha,p-1)$的$\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-加法同周期码的生成多项式和最小生成集等结构性质。