Let $\mathbb{Z}_{p}$ be the ring of residue classes modulo a prime $p$. The $\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-additive cyclic codes of length $(\alpha,\beta)$ is identify as $\mathbb{Z}_{p}[u,v][x]$-submodule of $\mathbb{Z}_{p}[x]/\langle x^{\alpha}-1\rangle \times \mathbb{Z}_{p}[u,v][x]/\langle x^{\beta}-1\rangle$ where $\mathbb{Z}_{p}[u,v]=\mathbb{Z}_{p}+u\mathbb{Z}_{p}+v\mathbb{Z}_{p}$ with $u^{2}=v^{2}=uv=vu=0$. In this article, we obtain the complete sets of generator polynomials, minimal generating sets for cyclic codes with length $\beta$ over $\mathbb{Z}_{p}[u,v]$ and $\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-additive cyclic codes with length $(\alpha,\beta)$ respectively. We show that the Gray image of $\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-additive cyclic code with length $(\alpha,\beta)$ is either a QC code of length $4\alpha$ with index $4$ or a generalized QC code of length $(\alpha,3\beta)$ over $\mathbb{Z}_{p}$. Moreover, some structural properties like generating polynomials, minimal generating sets of $\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-additive constacyclic code with length $(\alpha,p-1)$ are determined.


翻译:在本文中,假设$\mathbb{Z}_{p}$是模素数$p$的剩余类的环。长度为$(\alpha,\beta)$的$\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-加法循环码被确定为$\mathbb{Z}_{p}[u,v][x]$-子模型,在其中$x^{\alpha}-1$和$x^{\beta}-1$是模$\mathbb{Z}_{p}[x]$和$\mathbb{Z}_{p}[u,v][x]$的理想。在本文中,我们获得了循环码和$\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-加法循环码的生成多项式完整集和生成最小集。我们证明了$\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-加法循环码的格雷映像既可以是长度为$4\alpha$和指数为$4$的$\mathbb{Z}_{p}$QC码,也可以是长度为$(\alpha,3\beta)$和指数为$p$的广义QC码。此外,我们确定了长度为$(\alpha,p-1)$的$\mathbb{Z}_{p}\mathbb{Z}_{p}[u,v]$-加法同周期码的生成多项式和最小生成集等结构性质。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
【NeurIPS 2020 - 斯坦福】知识图谱中多跳逻辑推理的Beta嵌入
概率论和机器学习中的不等式
PaperWeekly
2+阅读 · 2022年11月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器学习的Pytorch实现资源集合
专知
11+阅读 · 2018年9月1日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月25日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员