In computed tomography, the approximation quality of a scan of a physical object is typically limited by the acquisition modalities, especially the hardware including X-ray detectors. To improve upon this, we experiment with a three-dimensional subdivision scheme to increase the resolution of the reconstructed voxel data. Subdivision schemes are often used to refine two-dimensional manifolds (mostly meshes) leading to smoother surfaces. In this work, we apply a refinement scheme to three-dimensional data first, and only then, start the surface extraction process. Thus, the main subject of this work lies not on subdivision surfaces, but rather on subdivision volumes. In the volumetric case, each subdivision iteration consumes eight times more storage space than the previous one. Hence, we restrict ourselves to a single subdivision iteration. We evaluate the quality of the produced subdivision volumes using synthetic and industrial data. Furthermore, we consider manufacturing errors in the original and in the subdivision volumes, extract their surfaces, and compare the resulting meshes in critical regions. Observations show that our specific choice of a subdivision scheme produces smoothly interpolated data while also preserving edges.
翻译:在计算透视中,物理物体扫描的近似质量通常受到获取方式的限制,特别是硬件,包括X光探测器。为了改进这一点,我们试验三维子构件,以提高已重建的 voxel 数据的分辨率。 分构制通常用于改进导致更平滑表面的二维元体( 主要是线形体) 。 在这项工作中, 我们首先对三维数据实施改进方案, 然后再开始地表提取过程。 因此, 这项工作的主要主题不在于子成份表面, 而是子成份体体体体积。 在体积方面, 每个子成份体分体会消耗的储存空间比前一个多八倍。 因此, 我们将自己限制在单一的子成份体外体外。 我们使用合成和工业数据来评估所制作的子成份体质量。 此外, 我们考虑在原始和子成份体体积中制造错误, 提取它们的表面, 比较在关键区域产生的模组状体积。 观察显示, 我们所选择的分区图图在保存时也会平稳地缘数据。</s>