Software bugs pose an ever-present concern for developers, and patching such bugs requires a considerable amount of costs through complex operations. In contrast, introducing bugs can be an effortless job, in that even a simple mutation can easily break the Program Under Test (PUT). Existing research has considered these two opposed activities largely separately, either trying to automatically generate realistic patches to help developers, or to find realistic bugs to simulate and prevent future defects. Despite the fundamental differences between them, however, we hypothesise that they do not syntactically differ from each other when considered simply as code changes. To examine this assumption systematically, we investigate the relationship between patches and buggy commits, both generated manually and automatically, using a clustering and pattern analysis. A large scale empirical evaluation reveals that up to 70% of patches and faults can be clustered together based on the similarity between their lexical patterns; further, 44% of the code changes can be abstracted into the identical change patterns. Moreover, we investigate whether code mutation tools can be used as Automated Program Repair (APR) tools, and APR tools as code mutation tools. In both cases, the inverted use of mutation and APR tools can perform surprisingly well, or even better, when compared to their original, intended uses. For example, 89% of patches found by SequenceR, a deep learning based APR tool, can also be found by its inversion, i.e., a model trained with faults and not patches. Similarly, real fault coupling study of mutants reveals that TBar, a template based APR tool, can generate 14% and 3% more fault couplings than traditional mutation tools, PIT and Major respectively, when used as a mutation tool.


翻译:软件错误对开发者来说是一个始终存在的担忧, 修补这些错误需要通过复杂的操作来支付相当大的成本。 相反, 引入错误可能是一种不努力的工作, 因为即使是简单的突变也可以轻易打破程序测试( PUT ) 。 现有的研究已经在很大程度上分别审议了这两种相反的活动, 要么试图自动生成现实的补丁以帮助开发者, 要么寻找现实的错误来模拟和防止未来的缺陷。 尽管它们之间存在根本的差别, 但是我们假设它们不会在仅仅被视为代码修改时, 相互之间发生突变。 相反, 我们系统地检查这一假设, 我们调查补缺和错误之间的关系, 不管是人工生成的还是自动生成的。 大规模的经验评估显示, 高达70%的补缺和错误可以基于相似的词汇模式组合在一起; 进一步, 代码更改的44%可以抽象化成相同的变化模式。 此外, 我们研究的是, 代码变异性工具是否被训练为自动程序修理工具( APR), 以及 RAr 工具作为代码变异工具, 两者之间的关系, 两者都是人工生成的, 。 在原始的 RRA 工具中, 找到了 3 工具, 也可以被复制工具, 使用到原始工具, 。</s>

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
29+阅读 · 2022年9月10日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员