Modern graph neural networks (GNNs) learn node embeddings through multilayer local aggregation and achieve great success in applications on assortative graphs. However, tasks on disassortative graphs usually require non-local aggregation. In addition, we find that local aggregation is even harmful for some disassortative graphs. In this work, we propose a simple yet effective non-local aggregation framework with an efficient attention-guided sorting for GNNs. Based on it, we develop various non-local GNNs. We perform thorough experiments to analyze disassortative graph datasets and evaluate our non-local GNNs. Experimental results demonstrate that our non-local GNNs significantly outperform previous state-of-the-art methods on seven benchmark datasets of disassortative graphs, in terms of both model performance and efficiency.
翻译:现代图形神经网络( GNN) 通过多层本地汇总学习节点嵌入, 并在分布式图形的应用中取得巨大成功。 但是, 禁用图形的任务通常需要非本地汇总。 此外, 我们发现本地汇总甚至对某些禁用图形有害。 在这项工作中, 我们提议了一个简单而有效的非本地汇总框架, 以高效的注意引导对 GNN 进行分类。 基于这个框架, 我们开发了各种非本地的 GNN 。 我们进行了彻底的实验, 分析破坏性图形数据集, 并评估我们非本地的 GNN 。 实验结果显示, 我们的非本地 GNN 显著地超越了先前在7个基准数据集中以模型性能和效率为基准的破坏性能图的状态。