Aware of the importance of the good behavior in the scale space that a mathematical transform must have, we depict, in this paper, the basic properties and the inverse transform of the Scale Space Radon Transform (SSRT). To reconstruct the image from SSRT sinogram, the Filtered backprojection (FBP) technique is used in two different ways: (1) Deconvolve SSRT to obtain the estimated Radon transform (RT) and then, reconstruct image using classical FBP or (2) Adapt FBP technique to SSRT so that the Radon projections spectrum used in classical FBP is replaced by SSRT and Wiener filtering, expressed in the frequency domain. Comparison of image reconstruction techniques using SSRT and RT are performed on Shepp-Logan head phantom image. Using the Mean Absolute Error (MAE) as image reconstruction quality measure, the preliminary results present an outstanding performance for SSRT-based image reconstruction techniques compared to the RT-based one. Furthermore, the method (2) outperforms the method (1) in terms of computation time and adaptability for high level of noise when fairly large Gaussian kernel is used.
翻译:我们意识到数学变换必须具备的尺度空间中良好行为的重要性,在本文中我们描述了空间变换的规模辐射变换的基本特性和反向变换。为了用SRET的罪状图重建图像,以两种不同的方式使用了过滤后反射技术:(1) 分解SURT以获得估计的拉子变换(RT),然后利用古典FBP或使FBP技术适应SRET来重建图像,使古典FBP中使用的Radon投影频谱以频率域表示的SUST和Wiener过滤法取代。用SERT和RT的图像重建技术在Shepp-Logan头形图象上进行了比较。使用普通绝对误差(MAE)作为图像重建质量衡量标准,初步结果显示SRET的图像重建技术与基于RT的图像变换技术相比表现突出。此外,方法(2)在使用相当大的高的高原内核时,在计算时间和适应高噪音方面超过了方法(1)。