Sparse neural networks are important for achieving better generalization and enhancing computation efficiency. This paper proposes a novel learning approach to obtain sparse fully connected layers in neural networks (NNs) automatically. We design a switcher neural network (SNN) to optimize the structure of the task neural network (TNN). The SNN takes the weights of the TNN as the inputs and its outputs are used to switch the connections of TNN. In this way, the knowledge contained in the weights of TNN is explored to determine the importance of each connection and the structure of TNN consequently. The SNN and TNN are learned alternately with stochastic gradient descent (SGD) optimization, targeting at a common objective. After learning, we achieve the optimal structure and the optimal parameters of the TNN simultaneously. In order to evaluate the proposed approach, we conduct image classification experiments on various network structures and datasets. The network structures include LeNet, ResNet18, ResNet34, VggNet16 and MobileNet. The datasets include MNIST, CIFAR10 and CIFAR100. The experimental results show that our approach can stably lead to sparse and well-performing fully connected layers in NNs.


翻译:本文提出了一种创新的学习方法,以自动获得神经网络中完全连接的稀疏层; 我们设计了一个开关神经网络(SNN),以优化任务神经网络(TNN)的结构。 SNN采用TNN的权重,因为输入和输出都用于转换TNN的连接。通过这种方式,将探索TNN重量中所包含的知识,以确定TNN的每个连接和结构的重要性。SNN和TNN是用随机梯度下降(SGD)优化的交替学习的,以共同目标为对象。我们学习后,我们同时实现TNNN的最佳结构和最佳参数。为了评估拟议方法,我们在不同网络结构和数据集上进行图像分类实验。网络结构包括LeNet、ResNet18、ResNet34、VggNet16和MiveNet。数据集包括MNIST、CIFAR10和CIFAR100。实验结果显示,我们的方法可以稳定地导致低频和高频层。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
2+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月15日
已删除
Arxiv
32+阅读 · 2020年3月23日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年6月16日
Arxiv
2+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月15日
已删除
Arxiv
32+阅读 · 2020年3月23日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
7+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员